EN ALTERNATE VOLTAGE TRANSMITTER Z202－H

GENERAL SPECIFICATIONS

The $Z 202$－H module measures the alternate voltage input value and converts it into
The instument stands out for its precision class and its high input impedance．These －Alternate voltage input
terminals valtage IDP－sputctenes． 1.490 Vac in 41 preset ranges，which can be selected by －Each range can be set and extended to the next one，and it＇s possible to calibrate the
instrument on any full－scale in the continuous range of $0 . . .500$ Vac，without either over－ setring the fixed ranges，or opening the instrument（multi－eve trimmer accessibibe from
from
font －Trontpaneli）．
High precision clast 20 mA active／passive）or in voltage（ $(011.5 \mathrm{~V}$ or $0 / 2 . .10 \mathrm{~V}$ ）．

－4000 Vacacgavaraicin insunsuatione between voltage input，power supply and output ports． －Power ON indication by the panel LLED．

TECHNICAL SPECIFICATIONS

Consumption：

Input Specifications
$\begin{array}{l}\text { Voltage Input：} \\ \text { Alternate Voltage（1）} 0 . .500 \text { Vac；see the range selection table }\end{array}$

$\begin{array}{l}\text { Overvoltage } \\ \text { measurement Class：}\end{array}$
$\begin{array}{l}\text { CAT III } 300 \\ 300 \mathrm{Vac} f-\mathrm{n} .\end{array}$

Output Specifications

i．A medium Voltage value $(V C C)$ up to to 10% of the emeasurement is tolerated，higher values
decrease precision and can cause damages．This error component considers these precision

installation rules
ermodle is designed to be insaled on a DN 46277 guide，and wired only by fron We suggest you to install the instrument vertically in order to arrange the ventilation of the louvers．Avoid fiting tint modulues abotve equipment that ananerates heat oast；you are advisised to fit them at the bottom of the panel or on the enclosing compartment．

Overall Dimensions／DIP－switches and Internal Jumper Position

©SENECA
MI001422－E

input full scale setting

ATTENTION！
BEFOREYU ATTEMPT USING THE DIP－SWITCHES，MAKE SURE THAT
YOU HAVEDISCONECTED ALLCIRCUITSAT DANGEROUSVOLTAGE．
The instrument withstands an overload of 200% for 10 s．Higher or prolonged overload The instrument withstands an overload of 200% for 10 s．．Higher or prolonged overload
values may damage instrument＇s input section．We therefore advise you to carefully check the settings before applying the measurement voltage，if necessary using an ohmmeter sure the input resistance which should be Rin $=2000$ ת．Range（V）．
The range of the instrument is established by the positions of the DIP－switches SW2（2
way）and SW（4 way）and by the choice of the inputterminals．The table below shows the combinations usefulf for the preset capacity values．
 respectively indica
of the instrument）．

Full scale	Terminals	SW2	SW3	Full scale Terminals		SW2	SW3
490 V （F）	9 （N） 12	00	1000	240 V	$9(\mathrm{~N}, 11$	11	1111
480 V	9 （N） 12	01	1000	230 V	8 （N） 11	01	1001
470 V	$9(\mathrm{~N}, 12$	01	1001	220 V	8 （N） 11	01	1011
460 V	9 （N） 12	01	1011	200 V	8 （N） 11	10	100
440 V	9 （N） 12	10	1000	190 V	8 （N） 11	11	1000
430 V	9 （N） 12	11	1000	180 V	8 （N） 11	11	1001
420 V	$9(\mathrm{~N}, 12$	11	1001	170 V	8 （N） 11	11	101
410 V	9 （N） 12	11	1011	150 V	8 （N） 11	10	110
390 V	$9(\mathrm{~N}, 12$	10	1100	140 V	8 （N） 11	11	1100
380 V	9 （N） 12	11	1100	130 V	8 （N） 10	00	1000
370 V	9 （N）， 11	00	1000	120 V	8 （N） 10	00	100
360 V	$9(\mathrm{~N}, 11$	00	1001	110 V	8 （N） 10	00	1011
350 V	$9(\mathrm{~N}) 11$	00	1011	100 V	8 （N） 10	01	1011
340 V	$9(\mathrm{~N}, 11$	01	1011	80 V	8 （N） 10	00	1100
320 V	9 （N） 11	00	1100	70 V	8 （N） 10	01	1100
310 V	$9(\mathrm{~N}, 11$	01	1100	60 V	$8(\mathrm{~N}) 10$	01	1101
300 V	$9(\mathrm{~N}) 11$	01	1101	50 V	$8(\mathrm{~N}, 10$	01	1111
290 V	$9(\mathrm{~N}, 11$	01	1111	30 V	8， 10	10	1100
270 V	$9(\mathrm{~N}, 11$	10	1100	20 V	8， 10	10	1101
260 V	$9(\mathrm{~N}) 11$	10	1101	10 V	8， 10	10	1111
250 V	9 （N）， 11	11	1101	$500 \mu \mathrm{~A}(1)$	8， 10	11	111

N）：If
（I）：This is useful if you wish to use the instrument as a microammeter（ $500 \mu \mathrm{Afs}$ ）or for ange ：Factues below 10 V （s）

If you turn OFF（＂O＂position）switch SW3．1，this introduces the adjustment effect of the value between $0 \mathrm{~V}(0 \Omega$ completely $\mathbf{c c W})$ and 25 V （ $50 \mathrm{k} \Omega$ completelly cw）The trimmer
 volts the scale was increased，by measuring this resistance with an ohmmeter and
dividing the value by $2000 \Omega N$ ． The instrument can also be＇set by applying the known voltage on the input terminals（as
on the table）and adjusting the trimmer until you obtain the required reading．When the on the table）and adjusting the trimmer untily you obtain the required reading．When the
applied voltage exceeds 42 V ，you must use an insulated screwdriver，because the applied voitaae exceeds 42 v ，you must use an
nsulation of the adiusting screws is not ourarateed．
See the examples in the next paragraph

OUTPUT SIGNAL SETTINGS
The Z202－H instrumentitransmits a voltage or a currentsignal．
The internal Jumper，accessible under the rear side of the the case，allows to select the type of the output（voltage or current）．
The signal ranges instead can be set through the double DIP－switch SW1．
Current or Voltage Output Selection

Voltage Output：
SW1
J1 國：

（F）：Factory settings．
Output Range Settings

SW 1.2	$\frac{0-\text { OFF }}{}$	The start of scale offset is disabled（ $0.0 .20 \mathrm{~mA}, 0.5 / 10 \mathrm{~V}$ scale $).$
$1-\mathrm{ON}(\mathrm{F})$	The start of scale offset is enabled（ $4.20 \mathrm{~mA}, 1.502 .10 \mathrm{~V}$	

F）：Factory setting
©SENECA
MI001422－E
ENGLISH－ $5 / 8$

EXAMPLES OF POSSIBLE CONFIGURATIONS

On the table below there are 4 examples of configuration of the Input and Output signals．
The position of the jumper $J 1$ considered on the table is the same on the figure of Current The position of the jumper $J 4$ considered on the table is the same on the figure of Current
or Voltage Output Selection．

INPUT／OUTPUT SIGNALS	$\stackrel{\text { INPUT }}{\text { Terminals }}$	OUTPUT Terminals	sw1	sw2	sw3	J1
INPUT： 250 Vac OUTPUT： 4.20 mA （Active）	9 （N）－ 11	4 （＋）－ 5	x－1	1－1	1－1－0－1	－國
INPUT： 410 Vac OUTPUT： 0.20 mA （Passive）	9 （N）－ 12	$5(+)-6$	x－0	1－1	1－0－1	－回
INPUT： 120 Vac OUTPUT： 0.10 V	8 （N）－ 10	$5(+)$－ 6	1－0	0－0	1－0	－0．
INPUT： 200 Vac OUTPUT： $1 . .5 \mathrm{~V}$	8 （N）－ 11	$5(+)-6$	0－1	1－0	1－0．0－0	－可．

On the table，the＂x＂char indicates that the position of the correspondent DIP－switch is non

ELECTRICAL CONNECTIONS

Power Supply
 The power supply Voltage must be in the range of 85.265 Vdc or ac from 50 to 400 Hz ．

 The upper limits must not be exceeded as this can seriously damage the module．

Connection of the Alternate Voltage Input

FULL SCALE ： 10 ．． 130 Vac
FULL SCALE ： 140 ．． 230 Vac
FULL SCALE ： $240 . .370 \mathrm{Vac}$
FULL SCALE ： $380 . .490 \mathrm{Vac}$
MICRO－AMMETER

Adjust of Full scale

ATTENTION！ THIS OPERATION MUST BE CARRIED OUT WITPOWERCUTTOTEINTRTRUMENT AND

The full scale can be increased by a value from 0 V to 25 V
with respectto the rated value of the set full－scale． with respectito the retad value of the ese f fylull－scale． 2 V to 25
The measurement in ohms divided by 2,000 provides the value to be added to the full－scale．
Example：if the reading is 30,000 ohm，the full scale value is Example if the reading is 30,000 ohm，the full scale value is
increased by $30,000 / 2,000=15 \mathrm{~V}$

©SENECA

MI001422－E

CONNECTION OF OUTPUT

	CURRENT（ACtive Connection）
	CURRENT（PASSIVE CONNECTION）
$\begin{array}{l:c} 5 & 0 \\ 1 & \otimes v \\ 6 & 0 \\ \hline \end{array}$	voltage

