Z109REG WITH GALVANIC SEPARATION

GENERAL CHARACTERISTICS

- Universal input: voltage (dc), current (dc), thermocouples, PT100, rheostat, potentiometer.
-Sensor powered by 2 -wire technique: 20 Vdc stabilised, 20 mA max with short-circuit protection
voltage and current output
- DIP-switch for selecting: type of input, START-END, output mode (zero elevation, scale inversion), full scale output voltage (5 V or 10 V),type of output (mAoV).
- Facility for programming the following with a PC: beginning and end scale, additional input types, square root extraction, filter, burn-out etc.
- 3 -point insulation: 1500 Vac.

TECHNICAL SPECIFICATIONS

Power supply:	$10-40 \mathrm{Vdc}, 19-28 \mathrm{Vac} 50-60 \mathrm{~Hz}$, max 2.5 W ; $1.6 \mathrm{~W} @ 24 \mathrm{Vdc}$ with 20 mA output.
Voltage input:	Bipolar from 75 mV up to 20 V in 9 scales, input impedance $1 \mathrm{M} \Omega$, resolution $\max 15$ bit + sign.
Current input:	Bipolar up to 20 mA , input impedance $\sim 50 \Omega$, max resolution: $1 \mu \mathrm{~A}$.
Thermoresistance (RTD) input PT100, KTY81, KTY84-130/-150 and NTC KTY84-130/-150 andNC	 KTY81, KTY84 an NTC may be set only by soffware.
Thermocouple input:	Type J,K,R,S,T,B,E,N; resolution: $2.5 \mu \mathrm{~V}$, automatic detection of $T C$ interruption, input impedance $>5 \mathrm{M} \Omega$
Rheostat input:	Full scale $\min 1 \mathrm{k} \Omega$, $\max 15 \mathrm{k} \Omega$.
Potentiometer input:	Excitation voltage 300 mV , input impedance $>5 \mathrm{M} \Omega$. potentiometer value from 500Ω to $100 \mathrm{k} \Omega$ (with the aid of a parallel resistence equal to 500Ω). This input may be set only by softur This input may be set only by software.

(S)SENECA M1003143-E ENGLISH - 1/8


```
*)
```


SELECTION: INPUT / MEASURING SCALE

The type of input is selected by setting the SW1 dip-switch group at the
side of the module. Every type of input is matched to a certain number of scale beginnings START and ends END values which can be selected with the SW2 group. he next page table lists
The columns below show the dip-switch combination for the type of input and for the START and END chosen.

SW1	SW1	SW2	
INPUT TYPE	INPUT TYPE	START	END
1234	1234	123	456
1\% V	W10 TcR	111	11
Q1] ohm	610] Tc S	142	吅 2
-1\% mA	14. Tc T	回 3	ㅇ] 3
W] PT100	10] Tc B	di4	104
7.1. Tc J	114 TcE	185 5	$1{ }^{1+1} 5$
101] Tc K	14] TcN	146	146
		107 7	10] 7
		108 8	1088

NOTICE: DIP-switches must be set while the module is powered down, otherwise, the module may be damaged.
(S)SENECA MI003143-E ENGLISH-3/8

SETting Start AND END AT WILL

The START cale.
To obtain this facility use a signal generator, enabled to give the desired Please follow this procedure:

1. Set by dip-switches SW1 the input type and by SW2 a START and a END which include the desired beginning and fullscale values.
2. Power up the module.
. Sower up the module. e-transmit.
3. Set the required START value on the calibrator (or other instrument).
4. Press the START push-button for at least 3 sec. The yellow LED on . Press the START push-button for at least 3 sec. The yellow LED on Pront panel flashes to indicate the value has been stored.
5. Repeat points 4 and 5 for the required END value.
6. Shut off the module and set to OFF position the SW2 dip-switches, where you selected the START and END values.
7.

n order to re-program it (e.g. for a different type of input) repeat the
hole procedure.

SW2 DIP-switches numbers 7 and 8 enable you to set the output with o ithout zero elevation, and as a normal or reversed
The SW3 DIP-switch group enables you to select the voltage or curren type.
NOTICE: Before change the DIP-switches setting shut off module, ,

©SENECA

Mi003143-E
ENGLISH - $5 / 8$

SETTING BYPC

By a PC and Easy Setup soffware, it's possible to set other normally factory ixed parameters in addition to start and end.
Additional input types not selectable by DIP-Switches;
Square root extraction (normally disabled);
Negative burn-out (normally positive)
Start and end scale of the analog output
Value of the analog output in case of error
Rejection programmable for 50 or 60 Hz mains frequency (normally set to 50 Hz).
Sampling frequency/resolution (normally set to $15 \mathrm{sps} / 16$ bit).
Action of the digital output alarm in case of fault;
Instructions for setting and for the connection cable are supplied with the
software (to be requested as an accessory item)
Front panel LED Indication

Green LED	Meaning
Steady ON	Indicates the power supply presence
Yellow LED	Meaning
FFashing (req: 1 Flash./sec) (frashing (re2 2 Flash./sec)	Out Range, Burn Out or Internal fault
Dip-switches setting error	

ELECTRICAL WIRING
Power supply voltage must be from 10 to 40 Vdc
$\begin{array}{r:r}2 & 19 \div 28 \mathrm{Vac} \quad \text { (at any polarity) and from } 19 \text { to } 28 \mathrm{Vac} \text {; see also } \\ & 10 \div 40 \mathrm{Vdc}\end{array}$ $3: Q_{-1}^{10 \div 40 \mathrm{Vdc}} 2.5 \mathrm{~W} \mathrm{Max}$ INSTALLATIONINSTRUCTIONS section. The upper limits must not be exceeded, to avoid serious damage to the module.
Protect the power supply source against possible damage of the module
M1003143-E
ENGLISH-6/8
voltageinput V input < 150 mV

| $1(1)$ | 12 |
| :---: | :---: | :---: |
| +0 | 0 |

CURRENTINPUT mA inputvoltage input

RHEOSTAT INPUT thermocouple input TC (JKRSTBEN) Tc (JKRSTBE
input V input $>150 \mathrm{mV}$

 CURRENTINPUT POTENTIOMETERINPUT
 he loop is powered e module With $R=500$ R
(not provisidance $)$

(8) Ative Output (powerea) to connectop passive inputs
(9) Unpowered passive outputto be connected to active inputs.

SENECA

MI003143-E

ISTALLATION INSTRUCTION

dedesigned, for a vertical position fixing.
odule, avoioiding placing raceways are sure that adequate ventilation is provided for the giles. Don'tingtall ocdolules abeovevs or otherer objects which could ob

LECTRICCLL CONE COCTIONS

We suggest you to use shielded cables for connecting signals. The shield must be
connected to an earth wire used specifically for instrumentation. Moreover, it is good practice to avoid routing conductoris near power appliances suco as as inverters, SEVERE OPERATING CONDITIONS:
Severe operating conditions are as follows:

- High powersupply voltage $(>30 \mathrm{Vdc} />26 \mathrm{Vac})$.
- High power supply voltage (>30V

- Use of active courerent butput mod When modules are installed side

When modules are installed side by side, it may be necessary to separate them by at ${ }^{-}$If fanel t temperature exceed $45^{\circ} \mathrm{C}$ and at least one of the severe operating condition

N

hout the European Union and othere Hropeana counties with separate collection progran

SENECA
MIOO3143-E
ENGLISH - 8/8

