Current / Voltage - Frequency Converter Z104

general features
The current/frequency converter Z104 transforms the current or voltage input signal into a series of pulses of constant duration.
Atypical use is when, with a flow meter featuring an analogue output (example 4Atypical use is when, with a fliw
20 mA) the flow must be totalized.

- current input 020 mA or 420 mA with active or passive connection
supply of the sensor with 2 -wire method: 20 VDC stabilized, max. 20mA protected against short-circuiting.
- input in voltage 05 Vdd
- integration constant, rogrammable in the range 1 pulse eever, 2 hours to 10 KHz ; straightorward setting, can be performed using a digitial multimeter: - outuput on non open-collector transistor and on reed-relay;
- 3 -point insulation: 1500 vac.

TECHNICAL FEATURES

(SSENECA MI000276-E ENGLISH - $1 / 8$

 environment)
EN61010-1 (safety)
how to install
104 module is designed to be mounted on a DIN 46277 barr, in vertical position. oobtain an optimal working and duration, it is necessarat yo assure an adeouate vents.
Avoid to mount modules over deviced that generate heat; we suggest to mount devices Avoid to mount modules over
in the lower side of the panel.

HEAVY WORKING CONDITIONS

Heavy working conditions are:
High power voltage a $(>30 \mathrm{Vdc} />26 \mathrm{Vac})$

- High power voltage a

When modules are put side by side it s possible that it is necessary to separate them
at least 5 mm in the following cases:
Upper board temperature higher than $45^{\circ} \mathrm{C}$ and at least one of the heavy working
conditions verified.
condititons verified.
Upper board temerature higher than $35^{\circ} \mathrm{C}$ and at least two of the heavy working
temperature verfified.

INPUT SIGNAL SETUP

Current 0-20mA		Voltage 0-10 Vdc	
Current 4-20mA		Voltage 2-10 Vdc	
Voltage 0-5Vdc		SETTING position	
Voltage 1-5Vdc			Table 1

SETTING (FOR EXPERT TECHNICAL PERSONNEL ONLY):
The instrument can be set using a common digital tester following the procedure
If the number of pulsesthour to be totalized is P, the scale including the number P mus
be chosen from the following table and the «RANGE» DPP-switches set to the

FS - is		FS - is		
36.000.000 - 8.400.000		2.197,27 -	513	\% ${ }^{\text {a }}$
$9.0000 .000-2.100 .000$		549,32-	129	-
2.250.000 - 525.000		137,33 -	33	
562.500-131.250		34,33-	8	\%
140.625 - 32.813		8.58 -	2	
35.156,25- $\quad 8.204$		2,15 -	0,5	
$8.789,06-\quad 2.051$				Table 2
(S)SENECA				- 3

Connect a tester set to the range 10 VDCD to terminals $1(-)$ and $5(+)$.
T» DIP-switches to the SETTING
Tosition:
Turr the setting trimmer until the reading corresponds to the value given by the
formula:

$$
\text { Voltage reading }=\frac{10 \times \mathrm{P} \times \mathrm{K}}{\mathrm{FS}}
$$

Where:
P is the number of pulses/hour to be totalized
K i sa setting constant featured on the instrum
K is a setting onstant fifeatured on the thatized intruments label)
FS is the top of the scale selected in table ?
When you have finished, reset the «INPUT» DIP-switches (see table 1) to the position When you have finished, reset the «INPUT),
corresponding to the output of your sensor.
Example: in order to totalize 90 pulses / hour, set the «RANGE» DIP-switches (on the upper panel) to the configuration given in table 2 I.
Set the four «INPUT» DP-switches to the SETTING position.
Set the four «INPUT» DIP-switches to the SETTING position
Turn the setting trimmer until the voltage reading is:

$$
\text { Voltage reading }=\frac{10 \times 90 \times 1,05}{137,33}=6,881 \mathrm{Vdc}
$$

In previous formula 1,05 we put factor K printed on the devic's label.
When you have finished, reset the «INPUT» DIP-switches (see table 1) to the position When you have finished, reset he «IINPUT,

Lectrical Connections

onnected to a preferential ground for devices. Besides it is a a good rool ayust be wires near power installation cables like inverters, motors, induction furnaces etc.

POWER SUPPLY

 NORMS
Upper limits must not be exceeded, if it happen there could be Upper limits must not be exceeded, if it happen there could
damages tormodule. bect power source from possible module's
ltis necessay to protect
failure by fuse correctly dimentioned.

123

NPUTS

OUTPUTS

Reed-relay
$30 \mathrm{Vdc}-\mathrm{ac}$
$100 \mathrm{~mA} \quad \begin{aligned} & \text { NPN open-collector } \\ & 30 \mathrm{Vdc} 300 \mathrm{~mA}\end{aligned}$

©SENECA

Disposal of Electrical \& Electronic Equipment (Applicable throughout the European Union and other European countries with separate collection programs) This symbol, found on your product or on its packaging, indicates that this product should not be treated as household waste when you wish to dispose of it. Instead, it should be handed over to an applicable collection point for the recycling of electrical and electronic equipment. By ensuring this product is to the environment and human health, which could otherwise be caused by inappropriate disposal of this product. The recycling of materials will help to of this product, please contact your local city office, waste disposal service or thè retail store where you purchased this product.	
This document is property of SENECA ssl. Duplication and reprodution are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice Content of this documentation is subject to periodical revision.	
	SENECA s.r.I. Via Austria, 26-35127-PADOVA - ITALY Tel. +39.049.8705355-8705359-Fax +39.049.8706287 e-mail: info@seneca.it - www.seneca.it
S)SENECA	M1000276-

